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Oceanic internal waves forced by a latitude-independent wind field travelling eastward 
at speed U is investigated, extending the hydrostatic f-plane model of Kundu & 
Thomson (1985). The ocean has a well-mixed surface layer overlying a stratified 
interior with a depth-dependent buoyancy frequency N(z), and f can vary with latitude. 
Solutions are found by decomposition into vertical normal modes. Problems discussed 
are (i) the response to a slowly moving line front, and (ii) the response in a variable- 
f ocean. 

For the slowly moving line front assuming a depth-independent N ,  the trailing waves 
are found to have large frequencies, and the vertical acceleration awlat is important 
(that is the dynamics are non-hydrostatic) if the frequency w is larger than a few times 
(N’)t. The wake contains waves associated with all vertical modes, in contrast to 
hydrostatic dynamics in which slowly moving line fronts do not generate trailing waves 
of low-order modes. It is argued that slowly moving wind fields can provide an 
explanation for the frequently observed broad peak in the spectrum of vertical motion 
at a frequency somewhat smaller than N,  and of the vertical coherence of the associated 
waves in the upper ocean. 

To study lower-frequency internal waves, the hydrostatic constant-f model of 
Kundu & Thomson is extended to variable5 Various sections through such a flow 
clearly illustrate the development of a meridional wavelength A, = 27~/Pt as predicted 
by D’Asaro (1989), in addition to the zonal wavelength A, due to translation of the 
wind. The two effects combine to cause a greater horizontal inhomogeneity, so that 
energy from the surface layer descends quickly, travelling equatorward and downward. 
Since waves at any point arrive from different latitudes, spectra no longer consist of 
discrete peaks but are more continuous and broader than those in the constant-. 
model. The waves are more intermittent because of the larger spectral width, and 
vertically less correlated in the thermocline because of a larger bandwidth of vertical 
modes. The vertical correlation in the deep ocean, however, is still high because the 
response is dominated by one or two low-order modes after 30 days of integration. As 
U decreases, the larger bandwidth of frequency increases the intermittency, and the 
larger bandwidth of vertical wavenumber decreases the vertical correlation. A 
superposition of travelling wind events intensifies the high-frequency end of the 
spectrum ; a month-long travelling series of realistic strength can generate waves with 
amplitudes of order 4 cm/s in the deep ocean. 

It is suggested that propagating winds and linear dynamics are responsible for the 
generation of a large fraction of internal waves in the ocean at all depths. The main 
effect of nonlinearity and mean flow may be to shape the internal wave spectra to a wP2 
form. 
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1. Introduction 
Internal waves are gravity waves within a stratified fluid. Reviews can be found in 

Thorpe (1975), Phillips (1979), Garrett & Munk (1979), Munk (1981), Gill (1982), and 
Olbers (1983). In the atmospheric stratosphere and in the ocean observations indicate 
that they are as ubiquitous as waves at the surface of the ocean. Compared to surface 
waves, they have much slower propagation speed and much larger amplitude, the 
strongest ones moving the surfaces of constant density in the ocean by as much as 
100 m vertically. The frequency w of these waves lies in the rangefc w < N, wheref 
is the Coriolis frequency and N is the buoyancy frequency. The review papers listed 
above summarize several methods of generation, such as moving pressure fields, 
resonant interaction of a pair of surface waves, geostrophic adjustment after flow 
instabilities, and oscillating flow over bottom topography. Away from the equator, 
both stratospheric (Cornish & Larsen 1989) and oceanic observations indicate that 
there is a strong peak at a frequency slightly abovef. The corresponding motion is 
generally called an inertial waue (or near-inertial wave), while motion exactly at the 
limiting frequency o =fis generally referred to as inertial oscillation. In the latter case 
there is no wave motion, just motion of the fluid particles in horizontal circular orbits. 

The generation of oceanic internal waves by a moving wind-stress field is studied 
here in a linear model, extending the constant-f hydrostatic model of Kundu & 
Thomson (1985, referred to herein as KT85). Special emphasis is given to the 
behaviour of the waves near the low-frequency limit f, namely the inertial waves. The 
present work (i) reviews the relevant observations and models, (ii) examines some 
consequences of eliminating the hydrostatic assumption in a constant-fmodel, and (iii) 
studies the effects of latitudinal variation offin a hydrostatic model. It will be seen that 
the travelling winds can provide an explanation for several observed features of 
internal waves in the ocean. 

The notation is defined here to facilitate further discussion. The spatial coordinates 
(x, y, z )  and the velocity components (u, u, w) are in the (eastward, northward, upward) 
directions, Re (= 6371 km) is the radius and i2 (= 2.n dayd1) is the angular velocity of 
the earth, t9 is the latitude, and /? = df/dy = 252 cos B/R, is the latitudinal variation 
off. 

2. Some observed characteristics of inertial waves 
A good review of inertial waves is given in Fu (1981). Some of the observed 

characteristics are listed below. 
(i) After a storm the velocity in the surface layer can reach values as high as 70 cm/s 

(Thomson & Huggett 198 1). Below the thermocline amplitudes decrease with depth, 
reaching 3-4 cm/s near ocean bottom (Sanford 1975). 

(ii) They are observed nearly everywhere, except very close to the equator. Recent 
observations do not indicate that ' they are particularly pronounced at the latitudes 
wherefcoincides with one of the tidal frequencies' (Phillips 1977, p. 243). 

(iii) The motion is intermittent, and can persist anywhere from about 3 4  periods 
(Kundu 1976) to 20 periods (Thomson & Huggett 1981), Short persistence means that 
the bandwidth Am of the inertial peak is wide, withf/Aw w 10 if the persistence time 
is 10 inertial periods. 

(iv) Horizontal coherence scale Ax has been reported to vary over a wide range, 
from a few kilometres (Kundu 1976) to 50 km (Fu 1981 ; Paduan, de Szoeke & Weller 
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FIGURE 1. Frequency spectrum of horizontal velocity variance, measured in the western Atlantic 
ocean by Gould, Schmitz & Wunch (1974). Average of spectra at depths of 1503 m and 1522 m is 
shown, because the individual spectra at these two depths were not labelled. Note the secondary peaks 
to the right of the inertial peak. 

1989) to nearly 500 km (Thomson & Huggett 1981). Low coherence scale signifies that 
the horizontal wavenumber bandwidth of the inertial waves is large, since Ak N 1 / A x .  

(v) Vertical coherence scales have been reported to be about 100 m in the upper 
thermocline, about 200 m in the lower thermocline, and larger than 1000 m in the deep 
ocean with little phase change (Fu 1981). Therefore the vertical structure in the deep 
ocean frequently appears as standing waves, indicating the dominance of one or two 
low-order modes. 

(vi) Repeated vertical profiles have frequently revealed a dominant downward 
energy propagation (Sanford 1975; Kunze & Sanford 1986), except near rugged 
bottom topography where upward energy propagation has also been detected (Kunze 
& Sanford 1986). 

(vii) The inertial peak is generally observed at a frequency slightly larger than$ This 
‘blue-shift’ of the inertial peak is found to increase with depth (Fu 1981). 

(viii) The inertial peak is not only broad, it also frequently contains a stepped 
structure, especially on the high-frequency side. Moreover, secondary peaks are 
frequently observed at a frequency somewhat larger than f (figure 1). We shall come 
back to this point when we discuss the model results. 

3. Review of earlier models 
At least three kinds of theories have been proposed for the generation of inertial 

waves in the ocean interior, namely waue-waue interaction, remote (or ‘global’) 
generation and local generation. Wave-wave interaction involves a triad of internal 
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waves that can transfer energy among themselves through the nonlinear interaction 
terms in the equations of motion. Calculations of McComas & Bretherton (1977) show 
that one variant of this mechanism, called subharmonic instability, is particularly 
effective in transferring energy from higher frequency waves to inertial waves. 

Remote generation theory was first proposed by Munk & Phillips (1968), and 
followed up by Munk (1980) and Fu (1981). The idea is that high-frequency internal 
waves randomly generated at lower latitudes can travel poleward to their turning 
latitude where their frequency equals the local Coriolis frequency (that is, w = f), and 
reflect backward. Near the turning latitude the latitudinal structure of the horizontal 
velocity is proportional to the Airy function, which is oscillatory equatorward of the 
turning latitude and exponentially decaying poleward of it. The Airy function reaches 
its maximum magnitude slightly equatorward of the turning latitude, where the 
constructive interference of the different Airy functions corresponding to different 
vertical modes form a single peak. This leads to a horizontal velocity spectrum in which 
the peak occurs at a frequency slightly larger than the localf. The global generation 
model is vertically isotropic, that is there is no net vertical flux of energy. It would seem, 
therefore, that the observed dominance of downward energy (upward phase) 
propagation of inertial waves is direct evidence that most of the inertial energy in the 
thermocline and above is locally generated near the surface. However, the theory may 
have some validity in the deep ocean. 

Apart from the works mentioned in the preceding paragraph, most other studies 
have attempted to explain the generation of inertial waves by wind forcing at the 
surface. Assumingf to be constant, Pollard (1 970) studied the geostrophic adjustment 
after sudden application of a horizontally bounded wind, concluding that much of the 
inertial waves in the upper ocean is due to wind forcing. However, in the deep ocean 
the inertial waves in Pollard’s solution sharply decreased to negligible values, leading 
him to conclude that inertial waves in the deep ocean are either generated by the action 
of several storms at the surface, or they are due to other effects such as remote 
generation, not present in his constant-f model. 

There is now considerable evidence indicating that propagating atmospheric 
disturbances are a very potent source of inertial waves in the upper ocean (Thomson 
& Huggett 1981; D’Asaro 1985). Aspects of this phenomenon have been studied in 
several models. Geisler (1970) developed a two-layer, hydrostatic, constant-fmodel of 
the response to a spatially limited region of wind-curl moving zonally at uniform speed 
U, and showed that the nature of the solution depends on the magnitude of U relative 
to the eigenspeed c, of the modes. For common oceanographic parameter values the 
baroclinic modes satisfy U > c,, for which the equation of motion is hyperbolic and 
the solution has a laterally spreading wake in which the response decays with 
downstream distance approximately as xi. The barotropic mode usually satisfies 
U < c,, for which the system is elliptic and gives a symmetric response with no wake. He 
also showed that travelling atmospheric pressure fluctuations are far less efficient in 
generating internal waves than a travelling wind-curl region. Greatbatch (1983, 1984) 
discussed the effects of nonlinearity, mixing and various scales on a similar problem. 

The variation off  with latitude is obviously quite important for inertial waves, 
because they are near their turning latitude and cannot propagate far poleward. Geisler 
& Dickinson (1972) extended the constant-fcalculation of Geisler (1970) to variable A 
using only a single mode. Results showed that the response at a given point is first 
dominated by waves coming directly from the source, and then by waves reflected from 
turning points poleward of the source. Anderson & Gill (1979) studied the effect of /3 
on the horizontal propagation of a single vertical mode excited by a suddenly imposed 



Internal waves generated by travelling wind 533 

wind confined between two latitudes, and concluded that some of the superinertial 
(o >n energy found at a lower latitude is in fact due to the dispersion of inertial energy 
generated at higher latitudes. Price (1983) studied the nonlinear response due to a 
moving hurricane in a five-layer numerical model, and found a rapid outward and 
downward spreading of energy from the forced area at the surface. In an insightful 
paper, Gill (1984) studied the geostrophic adjustment of an x-independent zonal 
current in the surface layer; such a current would be generated instantly in the wake 
of a storm propagating infinitely fast. He showed that the initial loss of energy from 
the mixed layer is sufficient to provide a major source of energy for internal waves 
below the mixed layer. He also found that the magnitude is intermittent, horizontal and 
vertical scales tend to decrease with time, and there is some bottom intensification of 
energy. 

The variation offnot only results in the equatorward turning of the inertial waves, 
it also introduces the horizontal inhomogeneity necessary for the leakage of energy 
from the surface layer. D'Asaro (1989) demonstrated this feature in the following 
simple way. Let f xfo+Py, where& is the value off in the middle of the region of 
interest. Sudden application of a horizontally uniform wind will immediately start local 
inertial oscillations (o = f,) in the surface mixed layer, of the form u + iv = Uexp (- ift), 
where 0 is the complex amplitude. The variation of frequency with y results in 
meridional phase difference, and the motion becomes inertial waves of the form - w u+iv = Ue-ift = / ~ ~ - i f o t - i P u t  

which has a locally constant frequency f,, and a southward wavenumber Pt which 
increases with time, producing an ever-decreasing meridional wavelength 

A, = 2x/pt. 

Therefore, the motion will always develop horizontal scales small enough to leak 
energy efficiently from the mixed layer to the thermocline. D'Asaro concentrated on 
the decay times of inertial motion in the surface layer, and estimated an upper limit of 
1-2 weeks. He did not examine the flow below. 

Recently Eriksen (1993) studied the response to a zonal band of wind travelling 
eastward over the equator at U = 1000 cm/s. He showed that 20 vertical modes of the 
gravity and Yanai waves sum to produce oscillations near the localf surprisingly close 
( N 2") to the equator, analogous to the mid-latitude inertial waves studied here. His 
explanation of the spectral peaks in sea-level data from the tropical Pacific as being 
generated by travelling wind seems more plausible than the zero-group-velocity 
argument given by Wunch & Gill (1976). 

4. Discussion of constant-. calculations 
Many of the works cited in the preceding pages did not examine the characteristics 

of spectra, coherence, and intermittency of their model inertial waves, or of the flow 
below the surface layer. Yet these are some of the intriguing features of inertial motion. 
KT85 developed a two-dimensional hydrostatic model to study these features of 
inertial waves forced by a propagating front, treating f as constant. Eriksen (1988a) 
compared some results of this model to the near-inertial part of the frequency spectra 
measured at several depths in the upper 300 m in the Sargasso sea, and concluded that 
the vertical distribution of the measured spectra can be explained as the response to 
random translating wind systems. In another work, Eriksen (1988 b) found close 
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correspondence between the vertical wavenumber spectra predicted by KT85 and the 
observed spectra synthesized by Garrett & Munk (1979). 

A summary of the governing equations from KT85, plus a discussion of their 
solution, are given in this section. Many of the equations and ideas provided here are 
used in the next section, which discusses the solution of the same problem for variable 
f. Some features of the model not brought out in KT85 are pointed out, and 
consequences of including the vertical acceleration wt in the equations of motion are 
discussed. 

4.1. Governing equations 
Consider a continuously stratified ocean of buoyancy frequency N(z), with a surface 
mixed layer of thickness h in which N = 0 and a flat bottom at z = - D .  The ocean is 
forced by a y-independent wind stress (7”,7”) assumed to propagate eastward at 
uniform speed U. Let p be the perturbation pressure (that is, the pressure difference 
from the initial state of no motion), and p the perturbation density. Sincefis regarded 
as constant, the problem is y-independent. Then the Boussinesq equations of motion 
under the hydrostatic, inviscid, and linear approximations are 

ut -fv = -px + F, vt + fu = G, U, + W ,  = 0, pt - N%/g = 0, pz  +pg = 0, 
(2 a-4 

where subscripts denote derivatives. The stress is assumed to enter the ocean as a body 
force in a surface mixed layer of thickness h. Consequently 

(F, G )  = ( rx /h ,  7”/h)  

in the surface layer, and zero below. 
The rigid-lid boundary conditions, which hold for all baroclinic modes, are 

w = O  at z = O , - D .  (3) 

Solutions to (2), subject to (3), can be found by expanding the variables in terms of 
the vertical normal modes Yn(z) of the system: 

cc m m 

(u,v,p) = c (un,v]n,Pn) y n ,  w = x W n S  yndz, p = c Pn y n , ,  (4) 
n-0 n=O -D n -0 

where n = 0 is the barotropic mode, and n 2 1 are the baroclinic modes. The 
eigenfunctions satisfy 

1 
z Cn 

(3) +TYn = 0, with Yn, = O  at z =  0, - D .  

Since the magnitude of an eigenfunction is arbitrary, the convenient normalization 
Yn(0) = 1 is adopted for all modes. Substituting (4) into (2) and eliminating ,on and w,, 
the equations governing the modal coefficients are 

(6 a-4 Unt-fUn + P n Z  = 7 i 3  vnt +fun = 7:, Pnt + c i  un, = 0, 

where the forcing coefficients are given by 

(7;, 7:) = (r2, 7”) / YUZ, dz. 
-D  

(7) 
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It can be shown that 7, is the projection of a step function of magnitude 7 in the surface 
mixed layer on mode n.  A good discussion of the technique of normal mode 
decomposition, including allowance for damping, is given in McCreary (1 98 1). 

The equation for u, alone obtained from (6) is 

The forced solution is steady in the moving coordinate 

& - = x - u t  (9) 

fixed with the wind, the transformations a, + - Ua, and 8, + 
moving coordinates. Assume that the forcing term in (8) has the form 

relating the fixed and 

r",t + f7; = u5, a(&-) + 7; + f7Y = U?S(iJ, (10) 

where a([) is the delta function, and ?, is the projection of ;i on mode n, as in (7). In 
the absence of equation (10) becomes 7: = - ?&([). This signifies that T~ undergoes 
a sudden spatial drop of 7 in moving coordinates, or a sudden temporal increase of 7 
in fixed coordinates. The forcing then represents a line front independent of y .  In the 
presence of both 72 and 7y the forcing (10) does not have such a simple physical 
interpretation, and the solution to (3) then simply represents the 'impulse response' or 
Green's function. 

Let u i  be the impulse response for mode n.  In terms of the moving coordinate, (8) 
becomes 

where 

represents the wavenumber. For common oceanographic parameters, typical values 
are c,, - 20000 cm/s, c, - 250 cm/s, and U - 10&200 cm/s. The barotropic mode 
almost certainly satisfies U < c,, for which the solution of (1 1) is symmetric and decays 
exponentially away from the front. The baroclinic modes generally satisfy U > c,, for 
which (1 1) has a trigonometric solution confined in the wake of the front. (Section 4.5 
will show that in a non-hydrostatic model internal waves of all modes exist in the wake, 
whatever the relative values of U and c,, as long as o > N.) Unless otherwise stated, 
all baroclinic modes will be assumed to obey U > c,. The solution of (1 l), and the 
corresponding equation for v: determined from (6b), are given below. 

4.2. Solution for a travelling front 
The solution for the barotropic mode (n = 0, U < c,,) is 

where H(x) = 0 if x < 0 and 1 if x 2 0, and 



536 P.  K .  Kundu 

The solution for the baroclinic modes (n 2 1, U > cl) is 

1 - - 
7, sink,t 

H ( - a ,  v t ( 8  = [ - 5 + 5 c o s k , t  H(-fJ .  (14) f f  
uk(Q = -- f (1 -c;/u2p 

For negative values of 5 the first term in v i ,  summed over all modes, gives 

l a  1 -- 7, yn = -- 
f n-0 fh 

in the surface layer, and zero below. This represents the Ekman drift in the surface 
mixed layer, which balances the wind stress at downstream distances a few times larger 
than 1 /K  s co/ f ,  the barotropic Rossby radius with a typical mid-latitude value of 
2000 km. Closer to front the flow feels effects of the edge to the wind, so that the 
Ekman drift cannot be the only steady response. Here a sea-surface tilt results in a 
depth-independent geostrophic v ,  given by the decaying term in (13). 

The total impulse response at a point (x,z) is determined by summing over the 
normal modes according to (4). It is argued below that the barotropic contribution to 
the u-field can be neglected. Using a fixed coordinate system, (14) gives 

Q I -  
O3 ;i sinkn(x- Ut) u6(x, z, t )  = - c 2 Y,(z) = - w, sin (k, x - w, t )  Y,(z), (1 5 )  f (1 -c:/u~)' n = J  

where f on = Uk, = 
(1 - c;/ u2p 

are the allowed frequencies in the fixed frame. 

4.3. Solution for a travelling distributed wind 
Equation (1 5 )  represents the u-field due to a y-independent line source. For a wind-field 
distributed in x,  assumed 'frozen' and propagating at uniform speed U, flow at a point 
x = (x, z )  is given by the superposition integral 

u(x, t )  = [ ~ f ( a )  + f?'(a)] u6(x, t - a) da. 

For computing the impulse response u8 used in (17), the stress jump ;i has to be set 
to unity. 

4.4. Discussion of the solution 
Although the solution (1 5 )  is surprisingly simple, it contains several features that agree 
with observations of inertial waves. Some properties of the solution are discussed 
below. 

(i) The convergence of series (15) depends on several factors. For a depth- 
independent N and no mixed layer, the modal structure for horizontal velocity is 
Y, = cos (nnz/D);  equation (7) then gives x 2?/0  = constant, implying that series 
(15) diverges. (The factor w, in the second form of (15) changes very little with n for 
common values of U, so that its effect on the convergence of series (15) can be 
neglected.) In the presence of a surface mixed layer the series does converge, but slowly. 
The convergence is faster if N(z) decays sharply in the thermocline, which is sensible 
because only two modes are needed for a two-layer stratification. Calculations show 
that T,, may increase slightly for the lowest one or two baroclinic modes; for example, 
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for T = 1 dyn/cm2 and the density profile shown in figure 6, T~ = 40 x lop5, 
Tl = 2.16 x lop5, T~ = 2.18 x dyn/cm3, and so 
on. 

(ii) A comparison of (13) and (14) shows that the ratio of barotropic and baroclinic 
contributions to d is of order 

T~ = 1.89 x T4 = 1.62 x 

(u/Co> ( 7 0  / ;l Tn pn) % ( u / c o > ( h / ~ )  

which is negligible, while the same ratio for v’ is of order 

(70 / zl Tn p n )  h / ~  

which is small but non-negligible. However, the barotropic contribution here is non- 
oscillatory, and not of interest to us. Therefore, all numerical calculations will show the 
u-field only, and not the u-field which contains significant non-oscillatory parts. 

(iii) The allowed frequencies w, are the points of intersection of the hydrostatic 
gravity wave dispersion relation w2 =f2 + c i  k2 with the straight line w = Uk (figure 2). 
The relation w = Uk picks out the phase speed w / k  at which the waves appear steady 
to an observer moving at speed U. Since c, is the minimum phase speed of waves 
associated with mode n (see line w = c2 k in figure 2), U must exceed c, for the straight 
line w = Uk to intersect the dispersion relation. Note from figure 2 that c, is also the 
maximum group speed. No transient wave for which U < cn can therefore be found 
ahead of the propagating wind. 

(iv) Equations (13) and (16) show that the particle trajectory for each mode (or 
frequency) is elliptic, with an axis ratio of ~ ~ ~ ~ / v ~ ~ ”  = (1 - c:/ Uz))-i = Wn/f > 1 and 
the major axis oriented along the direction of travel of the waves. This agrees with the 
well-known property that the axes ratio of rotational gravity waves of frequency w 
equals o/f(see for example Kundu 1990, p. 522). 

(v) Equation (16) shows that all frequency components are larger than f, with 
w1 > w2 > w3, . . . , the higher modes converging toward the limit w = f. The second form 
of (15) shows that discrete spectral peaks are obtained at all on, with the largest single 
spectral peak at w1 because both w1 and are large. The inertial spectral peak due to 
the sum of all modes is blue shifted, because the higher modes (for which the various 
w, are close t o n  contribute less to the sum. As observed, the amount of blue shift 
increases with depth, where lower modes dominate. 

(vi) In the extreme case of very rapidly propagating wind (U $- el), the frequencies 
of all modes are packed nearf, with very little blue shift. The corresponding wavelength 
is A = 27cU/f, which is large and referred to as the ‘inertial wavelength’. In this case 
most of the inertial energy remains trapped in the surface mixed layer, with very little 
downward leakage into the thermocline. 

(vii) In the opposite extreme, as U slows down and approahes cl, the frequency 
components separate from the ‘pack’ one by one and move toward higher values, 
resulting in a large amount of downward leakage into the thermocline (see figures 3 and 
4 of KT85). 

(viii) Unless the waves survive dissipation for years, only a few low-order modes 
dominate the solution in the deep ocean, giving the impression of standing waves. This 
agrees with the observations of Fu (1981). 

18 F L M  254 
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FIGURE 2. Plots of o2 = f + c: k2 for n = 1,2,3, and 50, showing dispersion diagrams of hydrostatic 
internal wave modes. Line w = c2 k illustrates that c, is both the minimum phase speed and the 
maximum group speed of mode 2. Line o = Uk, with U > cl, intersects all baroclinic dispersion 
relations at near-inertial frequencies wl, w2,.  . . . The values of parameters used are U = 400 cm/s, 
f = s-l, c1 = 253, cz = 132, cQ = 88 and cb0 = 5 cm/s; these values of eigenspeed correspond to 
the density profile of figure 6. 

4.5. Consequences of non-hydrostatic dynamics 
Because the model makes the hydrostatic approximation in (2e), formula ( 1  6)  is valid 
as long as w1 remains several times smaller than the local N .  A solution to the equations 
of motion when the vertical acceleration wt is included in (2e) is given by Fennel & Lass 
(1989) for a depth-independent N .  However, consequences of the solution are not fully 
brought out there. Here we shall explore some of these consequences using simply the 
dispersion relation, without solving the differential equation. 

For constant N the mode shapes of vertical velocity, which satisfy w = 0 at 
z = 0, - D ,  are of the form sin (m,z), with the dispersion relation given by (Munk 
1981) 

k2N2 + m: f 
m: + k2 w2 = , m , D = m ,  n = 1 , 2  ,.... 

The horizontal group velocity is then 

G, = ao/ak = N 2 m i  k(mi + k2)-g (k2N2 + f 'mi)-;. 

Setting aG,/aw = 0, the maximum horizontal group speed is found to be 

GEax = N / m ,  = ND/nrc = c, 
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FIGURE 3. Plots of u2 = (k2NZ + n2x2f 2/D2)/(n2n2/D2 + ka), with c, = ND/nn, for n = 1,2, 3, and 50, 
showing dispersion diagrams for non-hydrostatic internal wave modes in a constant-N ocean. In (b) 
an enlarged view of the shaded box in (a) is show?. Line w = c2 k is tangent to the dispersion diagram 
of mode 2 at the inflexion point where w m ("3, showing that c, is the maximum group velocity of 
mode 2. Line w = Uk, with c3 < U < c2, intersects the dispersion curves for n = 1 and 2 at 
frequencies, above (Nf)T; it also intersects the dispersion curves for n = 3,4, .  . . , co at frequencies 
below (N'? Values of parameters used are N = lo-* s - l , f =  s-l, D = 4 km, and LI = 500 cm/s. 
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which is reached at an inflexion point of the dispersion relation where the 
frequency-wavenumber pair is 

(194 “tran 3 2 ’( Nf): w (Nf)i, k x m,CflN)i = wtran/c,. 

Taking N = lo-, s-’ and f= lop4 s-l, a typical period at the transition point is 
2n(Nf); - 2 hours. In deriving (19) it has been assumed that N $.f, which is an excellent 
assumption in mid-latitude thermoclines where N / f  - 100. The frequency wtrana is 
independent of the mode number, and the superscript ‘ fran ’ signifies ‘transition’ 
because the inflexion point seems to be a natural division between hydrostatic and non- 
hydrostatic waves. Note that c, = ND/nn also represents the maximum group speed 
of hydrostatic internal waves in a constant-N ocean. The reason it has the same 
significance in the transition region of a non-hydrostatic model, as (19a) shows, is that 
w and k are not large enough at the inflexion point to be out of the hydrostatic range. 

Figure 3 shows plots of the dispersion relation (18) for modes n = 1, 2, 3, and 50, 
assuming f= s-’ and N = lo-, s-l. Also included are plots of straight lines 
w = c, k and o = Uk, where c3 < U < c,. It is seen that the line w = c, k is tangent to the 
dispersion diagram for mode 2 at its inflexion point, so that the maximum horizontal 
group speed of a mode is indeed c,, consistent with (19a). Moreover, a line w = c ,k  
remains almost tangent to the dispersion diagram of mode n for a large range of w ,  so 
that only for about w > 5(Nf)i do the waves start to become non-hydrostatic. The 
minimum phase speed tends to be vanishingly small as k + co. In the hydrostatic case, 
on the other hand, figure 2 shows that the eigenspeed c, has the dual significance of 
being the maximum group speed as well as the minimum phase speed. 

An interesting consequence of removing the hydrostatic assumption is the genera- 
tion of internal waves of all modes in the wake of a propagating wind, whatever 
the value of U. The excited frequencies fall into two ranges, a low-frequency range 
f < < (Nf)i for rapidly travelling winds ( U  > cn), and a high frequency range 
(Nf)s < w < N for slowly travelling winds (U  < CJ. As an example, consider the line 
w = Uk in figure 3, for which c3 < U < c2. It intersects modes n = 1 and 2 at 
frequencies above ( N f ) ;  (see figure 3a), and all higher modes at frequencies below 
( N f ) ;  (see figure 3b). Generalizing, for a propagation speed in the range c,,~ < U < 
c,, the lower modes (1, . . . , n) generate high-frequency waves and all the higher modes 
generate low-frequency waves. The frequency intervalf < w < (Nf)f could be regarded 
as the ‘hydrostatic range’, while w 9 ( N f ) ;  could be called the ‘buoyancy range’. 

A frequently observed feature in the spectra of vertical displacement of isotherms in 
the thermocline is a broad peak (or shoulder), and high vertical coherence, somewhat 
below the local buoyancy frequency (figure 4). This feature has been explained 
(Desaubies 1975; Munk 1980) as a local phase coupling (that is, constructive 
interference) between the incident and reflected waves near the local turning depth in 
the thermocline at which w = N .  However, the constant-N numerical calculations of 
Shen & Holloway (1986), in which there are no turning depths, showed a spectral peak 
near N due to nonlinear wave interactions. They also raise the point that the 
observations of Levine et al. (1983a) and Levine, de Szoeka & Niiler (1983b), made 
close to the surface layer where the N-profile is not expected to support significant wave 
turning, showed a spectral peak and high vertical coherence near N .  

The discussion of this subsection provides the following alternative and promising 
explanation for this spectral feature. Figure 3(a) shows that for a large range of slow 
propagation speeds the w = Uk line can intersect the dispersion diagrams of a few low- 
order baroclinic modes at values of o somewhat below N. Moreover, the horizontal 
group speed at these points is small, so that the wave energy will not escape quickly to 
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FIGURE 4. (a) Observed spectrum of vertical displacement of 6.6 "C isotherm, measured at a depth of 
about 350 m in a location 800 km off San Diego. Note the increase of energy level just below the local 
buoyancy frequency N, followed by an abrupt cutoff. (From Cairns &Williams 1976.) (b) Depth-time 
plot of the vertical displacement of isotherms in the thermocline, observed off the coast of California. 
Sixty-four isotherms separated by about 0.1 "C are followed over a 10 hour period. Note that the 
high-frequency waves occur in groups of one to three, and exhibit remarkable phase coherence with 
depth; lower-frequency motions have greater displacements and show greater phase variability. 
(From Pinkel 1981.) 
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a location where the frequency may not bear such a relationship to the local N .  These 
features essentially agree with the observations of Pinkel (1975, 1981, 1985) and Levine 
et al. (1983 a, b), who noticed that at high frequencies the vertical motion has a simple 
vertical structure, and is strongly correlated vertically, the first mode becoming 
increasingly prominent at higher frequencies. 

The argument given here is qualitative because N has been assumed constant, while 
the resulting dispersion relation has been used to explain a phenomenon in the 
thermocline. For a depth-dependent N(z), the vertical modes of non-hydrostatic 
internal waves depend on o. For w < N,,,, the modes are oscillatory between the 
turning depths (where w = N(z)), outside of which they decay exponentially; see for 
example figure 5.10 of Phillips (1977), or figure 5 of Garrett & Munk (1979). The first 
baroclinic mode represents an up-down, in-phase motion of the vertical column 
between the turning depths in the thermocline, not of the entire ocean. The vertical 
displacement for mode 1 is maximum in the middle of the thermocline, and figure 4(b) 
does suggest such a behaviour. 

The validity of the explanation given here relies on the fact that the local dispersion 
relation should resemble the one given in figure 3 even when the density structure has 
a thermocline, simply because o is bounded from above by the local N (see figure 3 of 
Garrett & Munk 1972). The arguments given here to explain the peak and coherence 
of vertical motion are therefore valid, although the range of values of U which 
produces the best simulation of the observations will be different. Further discussion 
of this point is provided in the concluding section. 

5.  Solution for variablef 
As discussed above, inertial waves are greatly influenced by the variation of the 

Coriolis parameter with latitude. In order to determine how the constant-f solutions 
discussed in the previous section are affected by the variation offwith latitude, the 
hydrostatic set (6) is solved with f = 2i2 sin 8. Consider a y-independent wind field 
[?, T ~ ]  moving eastward at speed U. Because of the variation offwith y ,  however, the 
problem is not y-independent, and requires a numerical solution. The latitude range of 
the region of integration is taken to be 20" N to 40" N (figure 5). The flow induced by 
a line front moving eastward is examined in s5.2-5.4. The general case of an observed 
wind series, assumed 'frozen' and propagating eastward, is considered in 9 5.5. 

5.1. Method of calculation 
Making the moving coordinate substitution a, + - Ua,, equations (6)  become 

(20 a-c) 

The set (20) is integrated downstream as an initial value problem with starting 
conditions u, = u,  = p n  = 0 for g < 0. 

The conditions at the northern and southern boundaries posed a problem. A 
radiation condition allowing the energy to leave at these boundaries would be proper 
if the forcing were confined within the region, as in the moving cyclone problems of 
Price (1983) and Greatbatch (1983). This technique, however, does not work in the 
present problem which simulates the response to a travelling y-independent wind, for 
which some of the blue-shifted waves will travel slightly poleward, entering the region 
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FIGURE 7. Comparison of analytical and numerical solutions at depths of 0, 100, and 2500m. 
Parameters used are U = 600 cm/s, and a constant value off(30" N) = 0.7247 x s-'. Note the 
excellent agreement of the numerical and analytical solutions, and the interrnittency of the wave 
amplitude. 

of integration through the southern boundary. The propagation along characteristics 
will not work near the southern boundary for the same reason, since one cannot follow 
the solution along the poleward-going characteristic near this boundary. Several 
schemes given in Orlanski (1976) were tried, but each of them produced some 
distortion near the southern boundary. We finally decided to use the simple condition 
of zero normal derivative at the northern and southern boundaries, which did not 
produce any more distortion than the Orlanski schemes. The distortion near the 
northern boundary caused by this condition was negligible, as can be expected from the 
schematic phase lines in figure 5. In fact, the distortions were essentially confined to the 
region south of 35" N, and (except figure 11) all results displayed here are north of this 
latitude. 
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FIGURE 8. Flow due to a fast front moving eastward at U =_I200 cm/s, using a constant value of 
A30" N) = 0.7247 x s-'. (a) High-resolution spectra of u2, with two degrees of freedom and a 
bandwidth of 0.OlSf: Vertical scales are exaggerated at larger depths. Note the dominance of 
w1 = 1.023f below the zero crossing of mode 1 at 960 m. (b) Time series of u, showing the low 
intermittency. 

Although real storms last only about a week, the integration is carried up to 
l&ax/U = tmax = 30 days in order to understand the development of the solution for 
large times. The downstream grid size is taken as AlJU = At = 30 min. Since the 
system is hyperbolic, numerical stability requires that the grid slope Ay/A[  be 
greater than the characteristic slope dy/dE % ( U 2 / c i  - l);, which is maximum for 
the first mode. Choosing a factor of 1.1, the latitudinal grid size is set at 
Ay = 1.1 A[( V / c ?  - I)+. For a typical propagation speed of U = 600 cm/s, these 
criteria imply = 15550 km, y(40" N)-y(20" N) = 2222 km, A[ = 10.8 km, and 
y = 5.5 km. The magnitude oft,,, is larger than the zonal width of any ocean, which 
is why the integration is stopped after 30 days. After the finite-difference solution of the 
modal coefficients in (20), the complete solution is obtained by summing over 100 
vertical modes, as indicated in (4). 

The mode shapes Y,(z) and the values of c ,  are determined by solving the eigenvalue 
problem (5) .  The oceanographic parameters used are 

D = 2500 m, h = 50 m, 

1 gm/cm3 for z 2 - h, (21 c) 
P = {  1 + Apl[ 1 - e(z+h)/bl] + Apz[ 1 - e(z+h)/bz] gm/cm3 for z < - h, (21 d )  

where Ap, = 0.001 25 gm/cm3, b, = 200 m, Apz = 0.00225 gm/cm3, and b, = 1000 m. 
The assumed background density profile p(z) implies a surface mixed layer of thickness 

(21 a, b) 



546 P. K.  Kundu 

105 x 12 

6 

? 
v! 0 a 
LX:" 1 2  3 0  

500 m lo4 1 

i. 1 2 3  

, 2000 m lo3 

L 1 2 3  

@!f 

100 m 

A 
1 2 3  

1500 m 2i 

0 1 2 3  

x 6  

3 

2500 m L 
0 i 2 3  

WlJ' 

d 0 1 2  3 0  

500m 1 0 ~ x 2  

1 2 3  

1500 rn 

h 
1 2 3  

2500 m 
k 

2000m lo3 x 6 1  1O3x6] 

0 1 2  3 0  1 2 3  

FIGURE 9. Flow due_to a fast front moving eastward at U = 1200 cm/s using a variable9 model, 
showing spectra of ua at (a) 25" N and (b) 35" N at various depths. Note that the spectra at 25" N 
contain a wider range of frequencies than the spectra at 35" N, because the waves arriving here have 
been generated in a wider range of latitudes in the north. 

@!f- W!f 



Internal waves generated by travelling wind 547 

h = 50 m, and a thermocline just below the mixed layer where N,,, = 0.89 x lop2 s-l 
(figure 6). The eigenvalue problem is solved by taking 5000 points in the vertical, 
resulting in a fine vertical resolution of Az = 0.5 m. The so-called ‘shooting method’ 
is used, which involves assumption of a value for c,, integration of (5) from the sea 
surface with the boundary conditions Y,(O) = 1 and Ya,(0) = 0, and checking to see 
if the condition !PJ -D) = 0 is satisfied at the ocean bottom. If not, the procedure is 
repeated with a different value of c,, until the boundary condition at the ocean bottom 
is satisfied. The iteration procedure is automated so that the various possible solutions 
are found in order of increasing n, starting with n = 1. Altogether, 100 modes are 
determined. The first three baroclinic eigenspeeds are found to be c1 = 252.6, 
c2 = 132.0, and c3 = 87.9 cm/s. The barotropic mode does not satisfy the rigid-lid 
condition used here; for n = 0 we use the known solution Yo(z) = 1 and 
co = (gD); = 20000 cm/s. After finding the eigenfunctions on 5000 vertical points, 
their values are saved on only 100 vertical points, at intervals of 25 m; they define the 
depths at which the flow field is evaluated. 

The accuracy of the finite-difference calculations is checked by comparing the u-field 
computed from (20) with that computed from analytical solution (1 5). Parameters 
chosen for this comparison are a sharp front with a jump in T~ of ;? = 1 dyn/cm2, a 
constant value of f(30” N) = 0.7247 x s-l, and U = 600 cm/s. Figure 7 shows the 
resulting time series of u(t) = u(-E/U)  at depths of 0, 100 and 2500 m. (The 
independent variable in these series can be regarded either as time in fixed frame, or as 
(downstream distance)/U in moving frame.) Except for a slight phase lead of the 
numerical solution at all depths, the series are practically indistinguishable. 

Results will now be presented for the u-field generated by three values of the frontal 
propagation speed: U = 1200 (‘fast’), 600 (‘medium’), and 300 cm/s (‘slow’), using a 
variable f. 

5.2. Results for fast front (U = 1200 cm/s) 
Consider a front propagating at U = 1200 cm/s. As a prelude, figure 8 shows the 
time series and variance spectra of u at several depths for a constant value of 
f(30” N) = 0.7247 x s-l. At this high value of U, equation (16) shows that all 
values of w, are close to f, with w1 = 2.3 YO above f, o2 = 1.2 % above f, and so on. 
Consequently, the spectral peaks (figure 8 a)  are very thin, and the separate components 
wl, w,, . . . , are not resolved even with the smallest possible bandwidth l/tmaz used in the 
spectral calculation. The intermittency, being the result of interference of waves of 
different frequencies, is small (figure 86). The spectral peak in the surface layer is 
practically centred onf, while the peaks in the deep ocean (lOO(r2500 m) are slightly 
blue shifted, implying the dominance of low-order modes in the deep ocean. As 
explained by Gill (1984) in the context of a different problem, all modes are in phase 
at t = 0, their sum amounting to a flow confined in the surface mixed layer and rotating 
clockwise at an angular speed o x;f. However, mode 1 rotates at a larger angular speed 
wl, and reveals its maximum amplitude below the mixed layer when it develops a 90” 
phase difference in time t ,  = &/(wl -f) = 10.9 days. Similarly, mode 2 does the same 
in time t ,  = 20.8 days. The ‘beating time’ (one lobe of the amplitude envelope) in the 
deep ocean is due mainly to the interference of modes 1 and 2, and has the magnitude 
2n/(w, - 0,) = 77 days. This is consistent with figure 8 (b), where a little less than half 
the lobe shows up in 30 days. Although mode 1 takes 10.9 days to develop its maximum 
amplitude in the deep ocean, it starts to appear immediately. This energy does come 
from the surface layer, but zonal sections do not show a gradual leakage of energy from 
the surface layer. This is because the concept of wave groups becomes meaningful only 
when a number of modes are superposed. 
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Now consider the results of the variable-fmodel. Figure 9 shows the spectra of 2 
along 25" N and 35" N at various depths. The spectra at 35" N are not too different 
than those in the constant-fmodel (figure 8a), except that the peaks are slightly more 
blue shifted and wider. The reason for this is the southward propagation of the inertial 
waves, to be discussed shortly. The spectra at 25" N in the variable-f model show more 
structure. They contain a wide range of frequencies, and a close examination shows 
that the high-frequency waves at this latitude are generated at higher latitudes, and 
have travelled southward. For example the w1 generated locally at 40 "N is the highest 
frequency found at 25 ON. Use of (16) shows that 

(22) 

That is, the highest frequency found at 25" N is about 1.56 times the local value off, 
in good agreement with the near-bottom spectra in figure 9. Owing to the wider range 
of frequency content, the time series of u at 25" N are considerably more intermittent 
than those at 35" N (figure 10). 

The southward propagation of wave energy is illustrated in figure 1 1 ,  which shows 
yz-sections of the u-field at t = 8.31 and 24.98 days. In agreement with (l), the field 
indeed develops a north-south wavelength of A, = 2n//3t due to the latitudinal 
variation off. Taking p = 252~0s 30"/R, = 1.708 x lop3 day-' km-l, we get 

A, M 442 km at t = 8.31 days, and A, = 147 km at t = 24.98 days. 

These estimates agree fairly well with figure 1 1 ,  where every other zero contour is 
separated by one wavelength. A closer examination reveals that the value of A, 
increases slowly with latitude; this again is in agreement with A, = 2lc/Pt, and the fact 
that p decreases with latitude. (On the horizontal plane, the decrease of A, with time 
is schematically shown in figure 5.) 

Compared to the constant-fmodel, the vertical correlation of u was found to be 
smaller in the variable-f model. This is discussed in greater detail for a slower 
propagation speed of U = 600 cm/s. 

w1 at 40" N = 1.56f(at 25" N)+o,,,.f = 1.56 at 25" N. 

5.3. Results for medium-speed front (U = 600 crn/s) 
The main effects of decreasing the speed of propagation are to decrease A,, increase the 
frequency bandwidth, and hasten the leakage of energy from the surface layer. As a 
prelude, it is useful to examine the constant-fsolution first (figure 7). Formula (16) 
gives w1 = 10.3 % abovef, w2 = 2.5 % abovef, and so on. The intermittency below the 
mixed layer is caused by the interference of waves that have penetrated to these depths. 
At 100 m, a spectral calculation shows a primary peak slightly abovefresulting from 
the penetration of several higher modes, and a secondary peak at wl, giving an 
approximate 'beating' period of 27c/(w1 -f) = 9.74 days. At 2500 m, on the other 
hand, only the first two modes with their relatively high frequencies w1 and o2 have 
made their presence felt in 30 days, giving a beating period of 27c/(w1 -w2)  = 12.87 
days. These values of the beating period are in very good agreement with figure 7. 

Now consider the results of the variable-fmodel. Figure 12 shows the spectra of 2 
along 25" N and 35" N at various depths. Compared to the fast front (figure 9), the 
energy is now spread over a wider range of frequency, as expected from the larger 
values of o1 and w2. The comparison of the two spectra also shows that figure 12 has 
less energy in the surface layer and more energy below. This is due to a faster leakage 
from the surface layer due to greater horizontal inhomogeneity (shorter Az). Owing to 
the southward propagation of energy, a relation such as (22) holds again, with the 
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FIGURE 10. Flow due to a fast front moving eastward at U = 1200 cm/s using a variable-fmodel, 
showing time series of u at (a) 25" N and (b) 35" N at various depths. Note that the series at 25" N 
are far more intermittent than the series at 35" N. 

FIGURE 11. Flow due to a fast front moving eastward at U = 1200 c m / s  using a variable-fmodel, 
showing y, z-sections of the u-field at t = 8.32 and 24.98 days. Negative regions are shaded. Note the 
decrease of A, with time, the slow increase of A, with latitude, and the increased energy in the south 
at larger time, implying equatorial propagation of the waves. 

factor on the right-hand side now being 1.68. At 35" N, a secondary peak close to w, 
now clearly stands apart from the primary peak, especially at depths greater than 
2000 m. The intermittency of the two deepest time series at 35" N is therefore larger 
(figure 13) than for the faster propagation speed (figure 10). At 25" N the spectral 
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at larger depths. Note that the spectra at 25" N contain a wider range of frequencies than the spectra 
in 35" N, because the waves arriving here have been generated in a wider range of latitudes in the 
north. 
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widths are larger, and the first secondary peak is somewhat above the local w,,  
presumably due to the equatorward propagation of waves from higher latitudes. 

The correlation of u for three values of the vertical separation is shown in figure 14. 
A large number of modes contribute in the thermocline (left column). The range of 
contributing modes is larger in the variable-f model because the horizontal 
inhomogeneity arising out of the variation off causes a faster leakage from the surface 
layer. The waves generated by the various modes are not in phase at a point, because 
they originate at different latitudes. This reduces the vertical correlation compared to 
the constant-f model. In the deep ocean (right column), on the other hand, vertical 
correlation is high in spite of the large spectral width, because only one or two modes 
dominate. This agrees with the observations quoted in $2, namely that the vertical 
structure in the deep ocean frequently appears as standing waves. 

5.4. Results for slow front (U = 300 cm/s) 
The same basic effects of a smaller A,, a larger frequency bandwidth, and a faster 
leakage of energy from the surface layer continue as the speed of propagation is 
decreased to U = 300 cm/s. The allowed frequencies in the constant-f model are 
w,  = 83.4 % abovef, w2 = 11.4 YO, abovef, and so on. The hydrostatic assumption still 
holds, since [w/wtran],,, = [1.83f/3-~((fn>~],,, = [2.41(f/N)4],,, = 0.70 < 1; the lar- 
gest value is achieved on the ocean bottom at 40" N. Only the spectra are shown for 
this case (figure 15). A relation such as (22) gives the factor on the right-hand side to 
be 2.82; however, little energy is evident at this frequency in the deep spectra at 25" N. 
This is because the local value of w l / f  = 1.834 is quite high in this case, resulting in a 
fast downward leakage and domination of the deep flow by the modes excited locally 
by the travelling wind effect. Moreover, for variablefthe maximum local frequency is 
not wl, but increases with t because k ,  = Pt increases with t. Assuming that the high- 
frequency waves should be present in the solution for about 4 days in order that they 
are able to show up in the spectra, an appropriate 'maximum' value for zonal 
wavenumber is k ,  = Pt = p x (26 day) = 4.4 x lo-' cm-l. The travelling effect intro- 
duces a zonal wavenumber whose maximum value (using (12) and mode 1) is 
k, = 2.77 x lo-' m-l. With these values, the dispersion relation wi = f + c;(k: + k i )  
gives w1/f(25" N) = 2.36, in fair agreement with figure 15. (Such an argument does not 
work for U = 1200 and 600 cm/s, when the local downward leakage does not dominate 
the propagation from higher latitudes.) The vertical correlation (not shown) is now 
lower than in the case of U =  600 cm/s, because the increased horizontal in- 
homogeneity has caused a large number of modes to contribute to the flow. 

5.5. Results for observed wind 
A calculation is now presented using a time series of wind stress observed at a fixed 
point near the coast of British Columbia (top plots of figure 16b, c). During the period 
of observation, inertial waves were generated by warm and cold fronts propagating at 
speeds in the range U - 420-830 cm/s, features of which are reported by Thomson & 
Huggett (1981) and KT85. Four large fronts propagated nearly eastward during the 
second week of the wind-stress series shown in the figure, and generated inertial waves 
of maximum amplitude 75 cm/s in the surface layer, and 5-7 cm/s at a depth of 160 m 
near the shelf bottom. The object here is not to simulate the frontal response in shallow 
water, but to illustrate the superposition of responses due to various wind events 
during a month. This can be achieved by calculating the responses to the wind-stress 
series shown in figure 16, the entire series assumed to be 'frozen' and propagating 
eastward at U = 600 cm/s. 
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FIGURE 13. Flow due to a medium-speed front moving eastward at U = 600 cm/s using a variable- 
fmodel, showing time series of u at 25" N and 35" N at various depths. Note that the series are 25" N 
are far more intermittent than the series at 35" N. 

The spectra in figure 16 are qualitatively similar to those for the response to a front, 
except that they are coloured by the spectra of the wind forcing. Let $(t)  = 7f(t)+f?(r) 
be a stationary wind forcing, and (̂ ) denote Fourier transform. Then a transform of 
(17) gives 

(23) 

where S,  is the spectrum of u(t), S+ = w2SrZ+f2Sr, is the spectrum of 
$(t) E C(t) +f?(t), and lis is the frontal response or 'transfer function'. Equation (23) 
shows that the response at a particular w is proportional to the strength of the wind 
forcing at that w ,  modulated by the magnitude of the transfer function. There is no 
response at a particular w if the forcing does not have energy at the same w, which is 
a characteristic of all linear forced systems. A calculation showed that S4 increases with 
w for the wind series shown in figure 16, which is not unexpected since the first term 
for S4 is proportional to w2. This is why there is more high-frequency content in figure 
16(a) than in the response due to a front propagating at the same U (figure 12), for 
which $(t)  = ~ 8 ( t )  and S4 is white. Time series plots of figure 16 show amplitudes of 
order 4 cm/s for depths larger than 2000 m, and that they are in the form of standing 
waves. 

iC(0) = &w) $(w) --f S&) = I$(w)12 S&), 

6. Summary and comments 
Generation of internal waves in an ocean due to the zonal propagation of a y -  

independent wind field has been investigated by extending the hydrostatic constant-. 
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FIGURE 14. Flow due to a medium-speed front moving eastward at  U = 600 cm/s using a variable- 
f model, showing the vertical correlation of u, namely ul(t)  u2(t + T ) / u ; ~ ~  u;"". The depth pairs are 
indicated on the plots. The left column shows correlations in the thermocline, and the right column 
shows correlations at mid-depth and (a) 6' = 25" N, (b) 0 = 35" N, (c) 6' = 30" N. Thefis regarded 
as variable in (a) and (b), and as constant in (c). Note that the correlation is lower in the variable$ 
model, and in the thermocline. 
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model of Kundu & Thomson (1985). For a constant-N ocean, it is shown that the 
hydrostatic assumption is valid if the frequency is not much larger than ( N f ) ;  (figure 
3). The non-hydrostatic but constant-fcase is examined first. The wake contains waves 
of all modes, whatever the value of U. This feature is different from the hydrostatic case 
where the restriction U >  c, applies; the reason for the difference is that c, is the 
minimum allowable phase speed in a hydrostatic model, and only for U > c, can the 
line w = Uk pick out the phase speed w / k  at which the waves appear steady to an 
observer moving at speed U (54.4). For c , + ~  < U < cn: the lower modes (1, ..., n)  
generate high-frequency internal waves in the range (Nf )r  < w < N ,  and all the higher 
modes generate low-frequency waves in the range f < w < (Nf);. Wind fields 
propagating over a wide range of slow speeds excite a few low-order modes at 
frequencies somewhat below the local N (figure 3a);  this can explain the broad peak 
(or shoulder) and high vertical correlation observed in the seasonal thermocline at 
frequencies somewhat below the local N (figure 4). Desaubies (1975) and Munk (1980) 
explained these phenomena as due to constructive interference at the turning depth, 
while Levine et al. (1983a, b) speculated the high correlation as being due to the 
critical-layer absorption of the high modes by a mean flow. 

The above argument is qualitative, because N is assumed depth-independent in the 
dispersion relation shown in figure 3. The non-hydrostatic modes in the presence of a 
thermocline are discussed in Garrett & Munk (1972). At a given frequency w < N,,,, 
the solution of the non-hydrostatic eigenvalue problem determines the mode shapes for 
an infinity of discrete values of k,(w), which gives the dispersion relation. The mode 
shapes are oscillatory in the depth range in which w < N(z),  outside of which they 
decay exponentially. The resulting dispersion relation resembles figure 3 qualitatively, 
simply because the frequency must be less than the local value of N(z). Therefore the 
argument offered here to explain the spectral shoulder and coherence at frequencies 
somewhat below the local N seem promising. 

To understand the behaviour of lower-frequency waves, the response to a y-  
independent front moving eastward is numerically calculated in a hydrostatic model 
with variable5 The region of integration extends from 20" N to 40" N, and the wave 
field is examined for U = 1200, 600, and 300 cm/s. Compared to the constant-fcase 
(figures 7 and 8), the spectral widths are now larger, especially at lower latitudes 
(figures 9,12,15) where the highest frequencies are close to the ones produced at 40" N ;  
this of course is due to the equatorward and downward propagation of the waves 
(figure 11). (However, such a rule does not work for the slower propagation speed 
U = 300 cm/s, where little of the highest frequency generated at 40" N appears in the 
deep spectra at 25" N (figure 15). This is because the high value of the local maximum 
frequency, caused by a combination of wind translation and b-effect, results in a fast 
downward leakage from the surface layer and a domination of the local generation 
over equatorward propagation (5  5.4).) Compared with the constant-f model, 
persistence of the oscillations in the surface layer is shorter, and consequently the wave 
amplitudes in the thermocline are larger (compare figures 8b and 10); the waves are 
also more intermittent due to the larger spectral width (figures 10, 13). 

Compared to the constant-f model, the waves are vertically less correlated in the 
thermocline (figure 14, left column) due to the contribution of a larger bandwidth of 
vertical modes, each generating a different frequency w,. In the deep ocean, however, 
domination by one or two modes make the correlation high (figure 14, right column), 
and the waves appear as standing modes, as observed by Fu (1981). (Additional modes, 
which have angular velocities only slightly abovef, would appear in an inviscid deep 
ocean if the integration were carried forward for a time much longer than 30 days. This, 
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of course, will not happen in the presence of some dissipation. In fact, several 
calculations show that the frictional decay time of inertial waves generated in the deep 
ocean by a single storm is likely to be several months long, but not years.) The model 
spectra in the deep ocean also show a larger proportion of high-frequency content 
(figures 9, 12, 15, 16), in agreement with the observations. Compared to the 
observations the vertical correlation scales seem rather high. This is presumably due to 
the assumed y-independence of the wind field. If some randomness is added to the y-  
distribution of the wind, then the equatorward and downward dispersion of waves 
from higher latitudes will result in a less vertical correlation at a lower latitude. 

The fundamental reason for faster downward leakage of mixed-layer energy and 
other differences between the variable-f and constant-fmodels is the development of a 
constantly decreasing meridional wavelength A, = 27~/Pt .  Although this expression 
was derived by D'Asaro (1989) in a problem forced by a spatially uniform switched- 
on wind, the present calculations with a zonally moving meridionally structureless 
wind illustrate the same effect quite graphically (figure 11 ; also figure 5) .  A zonally 
propagating wind develops an additional wavelength A,, and the two effects (A,  and hJ 
combine to result in greater horizontal inhomogeneity, and consequently a higher 
frequency and a faster downward penetration of energy. 

Several studies (for example Pollard 1970; Smith 1973) noted that their models 
cannot account for the low persistence of inertial energy in the surface layer, and 
suggested that the effect may be due to wind stress destroying as well as creating inertial 
oscillations. While this may be true for particular isolated events, it cannot be a general 
principle. On the average the random appearance of wind events should increase the 
inertial amplitudes as 8, like in a random walk (see figure 1 of Kundu 1984). The fact 
that the wave amplitudes in the surface layer forced by an observed wind stress 
containing 'random' events of realistic magnitude do not increase in the present 
calculations (figure 16) is due to the fast downward leakage caused by the dual effects 
of wind translation and p. Figure 16 also shows that on average the amplitude in the 
deep ocean does increase, perhaps as ti, due to random superposition of energy leaking 
out of the surface layer. In a month the maximum amplitudes near the bottom reach 
values of order 4cm/s, in agreement with several observations by Sanford and his 
group. 

The two important aspects left out of the present calculations are the influence of a 
background mean (or low-frequency) flow, and nonlinearity. Kunze (1985) and Kunze 
& Sanford (1986) discuss how the mean flow can cause such effects as smearing out 
of the spectral peaks by Doppler effect, changing the effective inertial frequency to 
feff =f+f[ (where 5 is the vorticity of the background flow), trapping the energy in 
regions of negative vorticity, and critical-layer absorption. The model spectra (figure 
16a) due to a realistic forcing are too spiky, and almost certainly they will be smoothed 
out due to nonlinear energy cascade and interaction with the mean flow, possibly 
ending with the w-' form of Garret-Munk (figure 4a) .  

FIGURE 16. Flow due to a wind series measured at a fixed point off the coast of British Columbis 
assumed frozen and propagating at U = 600 cm/s, using a variable-fmodel. In (a) the spectra of u* 
at 25" N are shown, and in (b) and (c) time series of wind stress and u at different depths at 25" N 
and 35" N respectively are shown. As expected the spectra have a large high-frequency content at 
25" N, and the time series reflect this. In contrast, the spectra at 35" N (not shown) had a much 
smaller bandwidth, which is also reflected in the time series. Note that the amplitude reaches values 
of around 4 cmbs in the deep ocean. 
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